
W'iI,- f THIS PAGE MWite Dore antereo /, INC
REPORT DOLiJLP"ATtON PAGE BEFORE OPENGFR

1.REPORT NUMBER G. OVT ACCESSION N0. 3. RECIPIENT'S CATALOG NUMBER

1,,
4. TITLE (and SwIt* S. TYPE Or REPORT & PERIOD COVERED

STUDY AND EXPERIMENTATION OF / Final Report

DESCRIPTION TECHNIQUES 6 EFRlGOG EOTNME

7. AUTHOR(o) .CNRCOGRNNUB(*

John L. Gieser

t. PERFORM!NG ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT. TASK

JRS Industries, Inc.

San Diego. Ca 92121
11. CONTROLLING OFFICE HAME AND ADDRESS 12. REPORT DATE

U. S.AwRsa~ fie1 November 1981
Post Office Box 12211 13. NUMBER OF PAGES
Research Triangle Park, NC 27709 82

14 MONITORING AGENCY NAME 6 AODRESS(iI duiffaern frow Cmnerelli~n Ifc.) IS. SECURITY CLASS. (.1 thi. rep.,t)

Unclassified

16. DISTRIBUTION STATEMENT (of Chi. Rop~esjL V ~ .OCASFCTO ONRON

Approved for public release; distribution unlimited.

I7. DISTRIBUTION STATEMENT (of thn. obotroatentered in Stock 20. I different from ReportV)

NA

16. SUPPLEMENTARY NOTES

JThe view, opinions, and/or findings contained in this report are those of the
4,author(s) and should not be construed as an official Department of the Army
Position, policy, or decision, unless so designated by other documentation.

W KEY WORDS (Contirna ,.an ee side it necessay nd id entity) ey oease nrnmat)
Micro-architectures, Micro-engine description techniques, Automatic
microcode generation, High level microprogramming languages.

A1MrftAC? (CoVo aMMe -ý 02ý N ,n..war iNpd #uWtit by 61ock nainbw)
This document reports on the research and iknvestigation aspects of micro-
architecture description methodologies. Its primary objectives are: 1) to
identify the methodology that appears to have the most promise for use in
an automatic microcode generation system; and 2) to define the means for
delv'eloping the necessary tools and techniques needed for further evaluating
this 'method olggy. In automatically generating microcode from a high level'
4ts&v~ce langif%.ge, apignificanit-ssue is the description of the target micro-

UNCL1§SIFIED /r-,

JRSINDUSTRIES, INC.
F TIECHNIGAL SEIRVICESI DIVISIION

11722 SORRENTO VALLEY ROAD, SAN DIEGO, CALIFORNIA 92121 I TELEPHONE (714) ?r5-4072

STUDY AND EXPERIMENTATION OF HORIZONTAL MICROPROCESSOR

MACHINE DESCRIPTION TECHNIQUES

.3FINAL REPORT

AUTHORS:

JOHN L. GIESER
ROBERT J. SHERAGA

AV

1 NOVEMBER 1981

U.S. ARMY RESEARCH OFFICE

CONTRACT NUMBER: DAAG29-81-C-0018

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

II
t l :.

JeS

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN
THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD
NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF
THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMENTATION.

J RS
FOREWORD

This document is provided to the U. S, Army, Army Research Office, in
fulfillment of part of the documentation requirements associated with Contract
No. DAAG29-81 -C-0018, 'Study and Experimentation of Horizontal Micro-
processor Machine Description Techniques.'I The purpose of this document
is to provide a summary of all work performed under the contract along with
conclusions and recommendations.

This document reports on the research and investigation aspects of micro-
architecture description methodologies. Its primary objectives are: 1) to
identify the methodology that appears to have the most promise for use in
an automatic microcode generation system and 2) to define the means for
developing the necessary tools and techniques and experimentally evaluatingI the methodology. Implementation of and experimentation with the method-
ology will necessitate future efforts and activities using this document as a
reference and point of departure.

JRS
TABLE OF CONTENTS

FOREWORD

LIST OF FIGURES

1.0 INTRODUCTION 1-1

2.0 PROBLEM OVERVIEW 2-1

3.0 STUDY RESULTS 3-1

3. 1 Microarchitecture Description Methodology 3-2
3.1.1 Source Documents 3-5
3.1.2 Microinstruction Description 3-7
3.1.3 Element Descriptions 3-9

3.1. 3. 1 Semantics for Transformation
Element Operations 3-16

3.1.4 Microoperation Usage. Rules 3-18
3.1.5 Microengine Behavioral Rules 3-24

3.2 Instruction Set Interpretation 3-28
3. 3 Preliminary Experimentation 3-31

3. 3. 1 Specific Target Microarchitecture Assessments 3-35
3. 3. 1. 1 AMD 2901 Based Processors 3-35
3.3.1.2 DEC VAX 11/780 Processor 3-36
3. 3.1. 3 TRW 2AU-80 Processor 3-37

4.0 CONCLUSIONS AND RECOMMENDATIONS 4-1

4. 1 Microarchitecture Description Conclusions 4-1
4. 2 Instruction Set Interpretation Conclusions 4-2
4. 3 Recommendations 4-3

5.0 BIBLIOGRAPHY 5-1

APPENDICES

A. Published Paper: Automatic Microcode Generation for Horizontally
Microprogrammed Processors.

B. Continuing Study and Experimentation Plan

I2 JRS
LIST OF FIGURES

PAGE

K Figure 2-1. HLL-TO-MICROCODE Compilation System 2-3

Figure 3-1. Microarchitecture Description Methodolcgy 3-3

Figure 3-2. Examples of Storage Element Descriptions 3-11

Figure 3-3. Examples of Link Element Descriptions 3-12

Figure 3-4. Examples of Transformation Element Descriptions 3-13

Figure 3-5. Syntax for Transformation Element Operations 3-14
Figure 3-6. MDM 'Strawman' Microarchitecture Block Diagram 3-32

Figure 3-6. MDM 'Strawman' Microarchitecture

Microinstruction Example 3-33

Figure 3-8. Data Flow Microarchitecture Block Diagram 3-34

-t. - ----- - -- *-

JRS
1 .0 INTRODUCTION

JRS Industries, Inc. (JRS) is conducting research and experimentation
in technology ar-eas associated with horizontally microprogrammed
processors. Key areas of activity include the use of such devices as

processing nodes in a distributed computer network, the automatic
generation. of efficient microcode for such devices starting with applica-
tion progranns written in a high level language (HLL), and the customiza-
tion of machine architectures for the solution of specific application
problems.

JRS has developed a significant base of tools and techniques which are
exceptionally valuable in conducting research and experimentation in

these areas. A software system, that compiles HLL programs and
generates efficient microcode for horizontally microprogrammed
processors, has been designed and implemented. The system includes
several features that are useful for this experimental activity, including
schemas for concurrency detection and code compaction. Additionally, 4
the system a]!ows for the introduction of the architectural description
of a target machine into the microcode generation process in a manner

that facilitates experimentation with machine architectures and their
relationship to application problems.

A generalized machine description capability, that deals with the issues
peculiar to gencr:,.ting microcode for horizontally microprogrammed
processors, is clearly needed. It is fundamental to the basic problem
of automatic microcode generation and it is basic to the practical consider-
ation of using horizontal machines as nodes in a distributed network,
particularly if each node may be unique; additionally, it is a tool that is
required for the conducting of efficient research and experimentatlon
in this field.

This document presents the results of a study and xperiment effort to
design, develop, and evaluate techniques and tools necessary to parameter-
ize high performance, horizontally microprogrammed processors. The
effort has as its primary goal the development of a practical, generalized,
and portable procedure which would enable a person, who is thoroughly
familiar with a processor, to extract from the hardware schematics and
timing diagrams, and express clearly and concisely, the structural and
behavioral features of the machine which are relevant to efficient micro-
code generation. This information would then be used to prepare input
that could be referenced by a generalized microcode generator to create
microcode for that target machine. In order to be feasible, the code

1-1

JRS
produced using this process must be usable and efficient, and the use
of these techniques and tools must be both cost effective and efficient
in terms of schedule and operation.

The benefits that result from achieving this primary goal are many.
The procedure would have value simply as a tool for describing a
horizontal processor clearly and concisely. It would permit the target
processor to be changed rather easily in the existing automatic micro-
code generation system, thereby enabling experimental code production

for a variety of machines. Of particular significance is that the
procedure would enable one to hypothesize a microarchitecture with
specific chara(teristics and to generate microcode for a particular
application problem that will run on this microengine. One would then
experiment by making modifications to the architecture and observing
the resulting effects on the microcode produced. This capability would
enable the identification of desireable architectural features of machines
for specific applications in a very direct and measurable way.

14
il

1-2

S_--__ _ _ _ _ _ _- --- w---- -..... - -

JRS
2.0 PROBLEM OVERVIEW

The overall problem to be solved is that of developing the techniques
and tools necessary to enable the efficient production of microcode
for horizontally microprogrammed p.. -cessors. One of the approaches
deemed promising for the solution of th'.s problem is the use of a high
level language (HLL). which is orienteu toward the system problem,
for coding of the application software and the subsequent compilation
and transcription of HLL statements into microcode for the horizontal
processor.

The following description is intended to highlight and summarize the
overall process under study and experimentation; that is, the process
of transforming statements written in a HLL format into a sequence of
statements executable in the target machine format. The description
is given sequentially with a graphic depiction of the process included
as Figure 2-1. The reader is referred to Appendix A for a more detailed
treatment of the process.

Programs for performing system information processing (application
programs) are prepared using a HLL. The HLL source statements are
"compiled", generating sequences of procedural operations. These
operations define an intermediate language (ILl) which will convey the
semantic structure of the original HLL source statements. Additionally,
ILl is more specific in designating machine resources and is highly
symbolic and compacted to allow for easier subsequent manipulation.

An analysis is made of the ILl statement sequences to determine their

concurrency of operations and timing dependencies. This time-and-
data partitioning of the ILl statement input stream will allow the later
code generation step to maximize the amount of parallel processing
performed up to the limits imposed by the application problem being
solved and the processing capabilities of the target machine. The output
of this step is Intermediate Segments of Straight Line Code (ISLC) and
their associated time dependency limitations. The ISLC segments
described above undergo a translation to an additional intermediate
Language (IL2) to genrerate sequences of primitive operations. The
IL2 expressed operation sequences generated are in a symbolic format
and must again be analyzed for resource and time-and-data dependencies.

At this stage of the compilation process, the symbolic primitive opera-
tions and symbolic resource designators are transformed into machine
dependent micro-operation sequences (Intermediate Language 3,
IL3) through the use of a microarchitecture description model and an

IL2 instruction set interpretation scheme. A detailed description of the

2-1
-. S

JRS
techniques used in microarchitecture description and instruction set
interpretation are the object of this report and are covered in detail
in the remainder of this document.

It is also at this stage that the code generation and improvement
schemas are used. The goal of this step is to compact micro -operations
into micro- instructions to the maximal extent possible, thereby effecting
a high degree of parallelism. To generate efficient microcode also
requires the ability to access and beat-match the current state of the
microengine'. resources. The issues of instruction set interpretation
and code generation are closely bound to the general resource allocation
scheme used by the code generator.

One of the goals of this study and experiment is to retain machine
independence and portability in as many of the tools and techniques
developed as possible without bearing a significant economic impact on
their use in the compilation process. Furthermore, since there are
many machine architectures that would be useful to experiment with,
it is necessary that the machine description procedure be generalized4
and made applicable to as wide a range of architectures as possible.
Moreover, the procedure must be relatively easy to use, automated
to the extent practical, and integrated with the existing experimental
software system. In short, if the existing experimentation system can
be made easily retargetable, (i.e., able to generate code for more than
one target machine), then the range of problems to which the tool may be
usefully applied will increase significantly and the effectiveness and
efficiency of the research will be greatly enhanced.

The most significant test data used i~or the study and experiment are
presented in Section 3.3 of this document.

Section 4. 0 of this document presents the conclusions and recommenda-
tions resulting from the study and experiment effort. Also included in
that section are some of the more significant assumptions made during
the course of the project.

____________ 2-2 -

HLL
Source

JRS Program

HLL
Optimizing
Compiler

Concurrency
Detection/

Processing
Distribution

Target Machine Microcode Resource
Micro Architecture - Generation Allocation/

Description and Optimizat ion Deallocation

I• I _ __. .

-- - - Simulation Machine

Machine
Architectural

Evaluation

Figure 2-1. HLL-TO-MICROCODE COMPILATION SYSTEM
2-3

JRS
3.0 STUDY RESULTS

The overall problem associated with a generalized microarchitecture
description procedure may be divided into two majcr steps. First, one
must devise a method for collecting and expressing the structural and
behavioral features of a microengine; and secondly, one must estabAish
the approach for introducing this descriptive information into the compila-
tion process. The method devised in the first step is referred to as
the Microarchitecture Description Methodology (MDM). The second
step approach is referred to as Instruction Set Interpretation (ISI).

The description methodology presented in this document is not to be

confused with the use of the terminologies "Computer Hardware
Description Languages", "Machine Description Languages", etc. The
techniques and procedures presented here are intended only to allow for
the extraction of the information required in the HLL-to-.Microcode
compilation ,rocess for a specific target machine. The latter terminology
refers to the methodologies and procedures used in machine architecture
description and design for creation and development purposes. Addition-
ally, the latter typically refers to "macro" level computer characteristics

as opposed to a description of the structural and behavioral features of
a processor's micro-engine.

3-1
3-1 ..

if JRS
3.1 MICROARCHITECTURE DESCRIPTION METHODOLOGY

The description methodology covers the following four basis areas:

0 Microinstruction description

*• Element descriptions

0 Microoperation usage rules

* Micro engine behavioral rules

The microarchitecture description methodology (MDM) is prefaced
with definition, convention, interpretation and nomenclature standards
to be applied to insure consistency and uniformity in these basic areas.

An overview of the MDM procedure is given in Figure 3-1. In the figure,
note that 'Diagrams' in the input area (top of page) is used to encompass
the documentation discussed below.

Each of the four basic areas, as well as source document requirements,
is discussed in more detail in what follows.

A parameter of significant importance in a microengine description is
timing. Timing is used to mean those instances or time periods when
events or actions occur or are occurring. The ability to specify detailed
timihig in a micro-architecture is paramount to generating efficient
microcode. Timing refers not only to the sequence of execution of a
microinstruction, but also to resources directly and indirectly affected
by the execution of a microinstruction.

In the MDM, the timings of interest are the following:

tMOP - the time to select and activate the resources of a MOP

tA - the time for which the resulting action of the executing
MOP is valid

tR - the time for which a selected resource is busy

The times tMOP and ustually tA are within a microcycle, while the times
tR are typically more than one cycle. As an example, the MOP which
specifies a read from large ii.. mory using the memory address register,
MAR, is activated during time, tMOP, within a micro cycle. tA -is
typically the time from MOP selection to the end of the current mic:,o-

3-2

...

J R S- - L L - *.--.-]

LgcControl & Data Timing Microinstruction
Diaram CFDo*jDiaagramslo Diagrams Diagrams

Microopelration

MicrooperaMicroiperaengon

UormatioehAnalysi

Rule Res urce

Microoperation.
r Genrmation,

Vastr dation , Se &neprtto

Figur 3-1.MicrooearhtecueDecitinMthdlg

3-3

JRS
cycle so that tR(MAR)> 1 cycle and the large memory is busy for
several cycles so that tR(MEMORY)>) 1 cycle. The time, tMOP,
can be further refined and classified as follows:

tMOps - the time within the cycle at which the MOP resources
are selected (usually denoted t,).

tMOPDo -the time within the cycle at waich the MOP resources
Sare deselected, i.e., completed. (unusally denoted tD)

tMOPA - the time duration for MOP execution. Thus,
tMOPA = tMOPD- tMOPS I

Similarily the time, tA, can be further classified based on the duration
of the action (signals) generated by the executed MOP. This classifica-
tion of actions is:

dynamic - the action perseveres for one complete cycle

transient - the action perseveres until the end of the current cycle 4
latched - the action is saved (stored) by the end of the current cycle

static - the action perseveres until reset

The times, tA, have a significant affect on code efficiency. In particular,
the times, tA, determine the flexibility available in selecting MOPs and
the ability to combine and compact MOPs within a microinstruction (i. e.,
the degree of concurrency acheivable). Furthermore, when tA is greater
than 1 cycle time, the interaction amongst MOPs (behavioral features)
becomes a severely limiting factor in code compaction due to the need
to schedule the required resources.

The scheduling of resources is even more critical when considering
those resources for which tR»> 1. It is for those resources with large
tR that resource "allocation/deallocation techniques can make a significant
contribution to thg' efficiency of the code produced.

3-4

JeS
3.1.1 Source Documents

The methodology assumes the existence and availability of the following
documentation on the micro engine and its interfaces:

0 Logic diagrams, along with a detailed technical
description

* Control and data flow diagrams and their detailed
technical descriptions

0 Timing diagrams and layouts, with a detailed
technical description

0 Microinstruction formats and content, along with a
detailed technical description

This documentation is assumed to exist at some level of detail; it is
intuitively felt that the lower the level of detail (in the sense of more4
exact and specific details), the better the mic roar chitec ture description
will be (in the sense of potentially better utilization of micro engine
features and potentially more efficient microcode generation). It is
also felt that, as a result of the organizational structure of the collected
micro engine data, the methodology will continue to have descriptive
value even though less and less detail is available for the micro engine.

The documentation mentioned above is meant to cover the topics typically
addressed in a good functional and/or operational specification. The
breakout given was used solely for the purposes of identifying and
specifying document content and required information. By way of exampleI
and definition, the following gives some of the more significant kinds of
information expected in the documentation using the perhaps artifical
groupings listed above.

In the logic diagrams group should be details of all major subsystems
within the micro-engine along with their interconnects. Additionally
the salient characteristics of these subsystems and interconnects would
be given. In general, this documentation would detail all significant
functional elements of the micro engine and how they relate.

Control and data flow documentation should detail all the allowable data
and control paths amongst the microengine elements. It should specify

*1 3-5

JRS
pat,, size and transmission characteristics. Additionally this documen-
tation should detail all available control mechanisms for data and con-
trol paths as well as for all the other hardware elements.

Timing diagrams and timing layout documentation should detail the
clocking and phasing of the microengine. In particular, it should
detail element selection and activation times as well as signal duration
times. This documentation should relate the timings of elements,
one-to-another, preferably through the use of timing sequence layouts.

The microinstruction format and content documentation should detail
all fields in the microinstruction in terms of their size, content, and
relationship, one-to-another. It should detail the operation of any
hardware-assisted micro-operations, the operational characteristics
for use of multi-functional fields, if any, and details of the branching
capability available in the microinstruction. Of particular interest are
details of the execution ordering (sequencing) and execution concurrency
or lack thereof for microoperations.

3-6

JRS
3.1.2 Micro~instruction Description

The rn.croinstruction format and content description area is used to
presenit, in detail. the possible microinstruction formats, the fields
within a microinstruction format, and to assign symbols to the numeric
values of each field. These symbols provide a syntactical link to other
sections of the MDM and provide a mechanism for expressing micro-
operations (MOPs) symbolically. Comments may be used freely to
explain fields and values as needed; however, they are not considered
a part of the description. The microinstruction description is accom-
plished using a series of keywords to describe each control word format
and the attributes of each field within the format. This description
could be performed eventually through an interactive dialog at a
computer terminal, with the computer using the keywords as prompts
for user inputs.

Different "formats" of the instruction word are defined to exist when the
value in one or more fields selects one of a set of interpretations for
the remaining bits of the instruction. Different formats may involve
completely different field layouts in each format. In contrast, the situa-

tion in which one or more bits within a field governs the interpretationJ
of the remaining bits of that field only, is considered to be simply an
encoded field representation~ in a single instruction format.

Bit length specifications are, by convention, expressed In the form:

where n is the leftmost, and m the rightmost bit of the field, numbered
according to the conventions specified for the machine. Similarly,I
timing specificatiors are expressed as:

<(TS9TD

where T5 is the selection time and TD the deselection time for the
element. Conventions will be established to permit TS and TD to be
expressed in either absolute or relative terms, and to permit TD
to represent a time which exceeds one instruction cycle. The timing
specification is an attempt to further refine the polyphase instruction
timing concept. The more precisely the activation times of elements
can be specified, the more efficiently the MONs can be combined. Thus,
knowing that the ALU is active for a specific operation from 50 to 95 ns
within the cycle, for example, may lead to better code compaction than
knowing it is active during "phase 3",

3-7

JRS
The microinstruction definition proceeds by specifying information
about the entire control word, then each format in turn. Each field
and its values ar-e then defined within each format. It is assumed
that all formats of the instruction are of the same length, but not
necessarily that they have the same execution time. A sampling of
the keywords used in the definition is given below.

MICROINSTRUCTION: instruction name
BITS: <n:m> ; Instruction width in bits
FORMATS: number ; Number of formats in this

instruction
DEFAULT FORMAT: format name Default type

FORMAT #j: format name ; Repeated for each format
FIELDS: number ; Number of fields in this format
TIMING: (0., TC> ; Cycle time for format #j

FIELD #k: field name ; Repeated for each field
BITS: <n:m>-
TYPE: ; Field type

DATA ADDRESS] Direct Memory address
INST ADDRESS ? Value ; Instruction address
LITERAL J ; Literal value
SELECTOR ; Selects one of a set of identical

Encoded components
SWITCH Value Multiplexor or enable/disable

settings
CONTROL ; Encoded control functions

VALUES: ; For encoded values
... 0:valuename ; Value-name is a unique symbol

Sused to represent each allowable
Svalue of the field

I... 1:value name
DEFAULT VALUE: ; Default value for this field

Direct-value or value name

The microinstruction definition is probably the most straightforward to
obtain from typical machine documentation. The format used is similar
to that for specifying field names in a generalized microassembler.
The utility of this information is that it permits symbolic names to be
attached to fields and values, which serve to link together the segments
of the architecture description.

3-8

3.1S Element Descriptions

The elements of the machine are the [hardware) components including
storage units (memories, registers, latches, etc.) and transforma-
tion units (A LU's, shifters, etc.). It is also a us-ful convenience to
define pseudo- ý3lements. which are conceptual elements (normally
registers) used to simplify the descriptions of component inputs and
outputs.

In general terms, there will be an element description for each
component shown on a detailed block diagram of the machine architec-
ture. Certainly this is true of storage and transformation units.
Link units, such as buses, generally will not require definition, but
a pseud o-element may be needed if a link has any function other than
an ordinary data path. Multiplexors are defined as elements.

Element descriptions consist of specifications of the inputs and outputs
for each element and the timing of the element within the cyrclt;.~ In
addition, for transformation units, the functions performed by the unit
must be given. For storage units, particularly registers, it is4
convenient to give the specifications for a set of identical components as
a group rather than to specify each element individually.

The list of element descriptions should be closed, and internally
consistent. Each input and output must be the name of an element
in the list as a field name. All elements must have at least one input
and one output. The use of conceptual pseudo-elements helps to make
this possible in a logical manner.

Pseudo elements of two types are used:

1. Storage pseudo-elements function like registers. Their
use makes it possible to isolate elements which would
otherwise have to be treated as a single larger unit. For
example, if the ALU-shifter configuration in the machine is:

3-9

JRS
Then the definition of a storage pseudo-element ALUOU'I which
can be thought of as a register which holds the output of fae ALU
and becomes an input to the shifter, permits the ALU ani shifter
to be isolated as separate elements.

2. Transformation pseudo-elements permit the description of opera-
tions which take place below the level of detail normally specified
in architecture diagrams; for example, autoincrementing
registers or split data paths. These pseudo-elements normally
do correspond to some hardware cor.mponents in the machine, which
are not microprogrammable. The definition of a transformation
pseudo-element is normally dictatedby a data path in the machine
which performs something other than an identity data transfer
function.

Parts of the element descriptions require further definition. It is not yet
clear whether it will be useful to establish classes, such as general
registers, control registers, scratchpad registers, and external registers:
or whether some standard, pre-defined names should be used for certain
elements, such as MAR, MDR (memory address register, memory data
register). It may be useful to conceive of all elements as transformation

units; and include the identity and null functions as legal transformations.

A sample of the keywords, format, and syntax used in the element
description section is given below. Figure 3-2 gives examples of the
most commonly used storage element descriptions, while Figures 3-3
and 3-4 give these examples for link elements and transformation elements,
respectively. Figure 3-5 presents a rAther complete syntax for transforma-
tion element operations. Section 3.1. ;. 1 below gives the semantics for
the transformation element operations.

3-10

JRS
REGISTER: stor elem name

INPUT : elem name , field name,...
OUTPUT : elem name....
BITS : c n:m>
READ TIME: < S. TD>
WRITE TIME: <Ts, TD)

REGISTER SET : stor clem name NOTrE:
INPUT : elem name. field name,.,. Implied names for
OUTPUT : elem name.... individual registers are:
BITS z <n:m) stor elern nameO
READ TIME : <T TD > stor-elem name(n-1)
WRITE TIME: Q TTD
NUMBER : a

DISCRETE : discrete name
SET BY: tran ele-rn name, field name, ..._~4z
USED BY: tran elem name,...
READ TIME : (<TS$n
WRITE TIME ,Ts< TD)
TYPE : ; When contents are changed

LATCHED ; Contents stored and saved
DYNAMIC ; Contents preserved for 1 cycle time
TRANS&ENT ; Contents- preserved until end of current cycle
STATIC ; Contents preserved until reset

PSEUDOREGISTER : stor elem-name
INPUT : elem name, field name,...
OUTPUT : elem name,...
BITS :
REArJ TIME : (TS2 TD)
WRITE TIME :(Ts, TD-

(. FLgure 3-2. EXAMPLES OF STORAGE ELEMENT DESCRIPTIONS

3-11

* JRS

MUX: mux name
INPUT : elem name, field name,...
OUTPUT : elem name
CONTROL: fiel7 name

PATH : path name
INPUT : elem name , field name,...
OUTPUT : elem name
CONTROL: field name

Figure 3-3. EXAMPLES OF LINK ELEMENT DESCRIPTIONS

3-12

JRS

A LU : tran elem name
INPUT : stor elem name, field name,
OUTPUT : stor elem name,.
BITS: (n:m)
FUNCTION-

value name
transformation : operation)
timing < TS TD

SHIFTER : tran elem name
[Same format desc:ription as A LU]

PSEUDO. TRAN ELEM : tran elem..name

INPUT : stor elem name, field name,...
OUTPUT : storelem name
BITS : (n:mf i
FUNCTION:

transformation: <operation>
timing • (TS. TD>

INTERFACE : tran elem name
DATA INPUT : stor elem name, field name,...
CONTROL INPUT :field name,....-
DATAOUTPUT : stor elerm name
BITS : (n:m>
FUNCTIONS: I

value name:

transformation: (operation>
timing: (TS, TD7

Figure 3-4. EXAMPLES OF TRANSFORMATION ELEMENT DESCRIPTIONS

3-13
S:>• - -- - -- ;-.._= -_.: • • • •...,,.•-. • . ,,--:-.. , , .. ,. i

SJRS

(operation) ::- (basic operation) < conditional operation)

, (conditional operation) :.-a IF (relational expression)
THEN (basic operation>

ELSE <operation>

(basic operation) <extended variable) < (expression>

extended variable) ::- (variable)) (variable> < field selector)

(expression> ::= (logical factor>
i(expression> .OR. (logical factor)
1<expression) XOR. (logical factor)
I(expression) .NOR. (logical factor)

(logical factor) ::= <logical secondary)
(Ilogical factor> . AND. (logical secondary)
(logical factor) . NAND. < logical secondary>

<logical secondary> :: < logical primary)
I NOT. (logical primary)

<logical primary> ::- (arithmetic expression>

<arithmetic expression> ::= <basic arithmetic expression)
(arithmetic expression) [<condition code primary>]

(basic arithmetic expression> ::= (term)
(<basic arithmetic expression> +<(term>
(basic arithmetic expression) - (term)

bp(term) I
(term) ::= (factor>t

(term> * (factor)
I(term> I < factor>

(factor) ::=(primary>
1<factor) @ < shift expression>

(shift expression) :* <(primary>.'
< primary : primary>

Figure 3-5. SYNTAX FOR TRANSFORMATION ELEMENT OPERATIONS (1 of 2)

3-14

JRS
(primary> ::m (element>

S(element> (field selector>

(element> ::- (constant>
S(variable)

(< expression))

(field selector) :: (•(expression)>
S<(expression> *< expression)>

<relational expression) :: (< relational primary))

<relational primary ::> expression) < relation > expression
<condition code expression)

<relation> ::L.LT. .LE. I .EQ. .NE. I .GT. I.GE.

<condition code expression)::- (condition code primary >
I • NOT. < condition code primary)

(condition code primary) > condition code relation> (condition code
primary)

4

(condition code primary> ::> <discretename>

I< condition code relation.> :.AND. .OR. .ANDNOT.

(variable> :< :stor elem name)
(field name>

(constant> ::* (number> I (sign) (nun•ber)

<number) ::= (digit> f (digit))

<digit> ::= 0111213141516171819

<sign) :: + j "

Figure 3-5. SYNTAX FOR TRANSFORMATION ELEMENT OPERATIONS (2 of 2)

3-15

IJRS

3. 13. 1 Semantics for Transformation Element Operations

For each function specified in the Transformation Element description,
the operation it performs must be specified by a statement which
expresses the output as some function of the inputs. This function is
expressed according to the syntax given in Figure 3-1, which provides
sufficient expressive power to state arithmetic, logical, shift/rotate,
bit, and conditional operations.

Each operation is specified as an assignment statement or a conditional.
The condition may involve arithmetic comparisons or the discretes
defined for the machine in the element description. The assignment

statement specifies the output (or certain bits of the output) as an
expression which may be logical, arithmetic, or shift.

Logical expressions use the relations OR, XOR, NOR, AND, NAND,
and NOT.

Arithmetic expressions use the arithmetic operations of +, -, *, I,
unary -. If a discrete is set as a result of the function, it must be
specified in square brackets following the expression. For example,
if ALUA and ALUB are the ALU inputs and ALUR is the output, and
CRY is defined as a discrete element representing the carry, then

ALUR = ALUA + ALUB [CRY]

defines the operation of additiL with the carry being set. Field
selections may also be used to specify a portion of the whole data
element width to which the function applies. A field specification is
placed in angle brackets directly following the term to which it
applies. Bit numbering uses the conventions specified the same as
the (n:m) specifications in field and element descriptions. A fieldspecification of

< n:m)

indicates that bits n to m inclusive are selected. The form

(n

is a shorthand notation for the single bit < n:n> .

3-16

..... •.. '-.- ,

JRS
Shift expressions include the specification not only of the number of
bits to shift, but the input value shifted in as well. This is done
using the general form:

BASE @ CNT : SI

where BASE is the item to be shifted, CNT is the number of bits
to shift (positive count z left Shift; negative count = right shift), and
SI is the shift inpui into the shifted bit positions. For example, the
operation for a simple 1 bit shifter attached to the output of a 16
bit ALU (bits 15:0), might be:

SHL: SHIFT OUT = ALUOUT @ 1:0

SHR : SHIFTOUT = ALUOUT @ -1 : ALUOUT (15>

The SHL would shift left one bit and input 0. The SHR would shift
right one bit with sign extension. Rotates are handled by specifying
the bits shifted out as the SI field; for example, a rotate right by 2
bits would be

RR2 : SHIFT OUT = ALUOUT @ -Z : ALUOUT (1*0>

3I

!I

3-17

JRS
3.1.4 Microoperation Usage Rules

The usage rules of the microarchitecture description methodology
give the set of rules for constructing valid microoperations.
Although the different types of MOPs may require widely varying
sets of resources, a general form of definition is possible. This
general form is:

S °, (i> (E) (0) (T (F)

OP is a mneumonic specifying the function to be performed

is the set of possible inputs to be used as operands
for the function

E is the set of transformational elements to be used
to perform the function

(O) is the set of possible outputs (destinations) to be
(0) used for the results of the function

•T is the set of timing increments used during the
(I performance of the function

(F) is the set of control word bits used in specifying the
function to be performed

The usage rules are intended to specify the most primitive operations
possible on the microengine, for example, the ALU operation rather
than an ADD operation; or a memory read rather than loading a
memory location into a register. The set of these primitive MOPs
forms a third intermediate form in the overall compilation process,
called IL3. There are a relatively small number of types of MOPs
at this low level into which all higher level operations, in particular
IL2 operations, can be decomposed. The decomposition process
is termed instruction set interpretation (ISI) and is addressed in N

Section 3. 2.

The usage rules are derived from the microinstruction control
capability and the transformational elements' function capability.
The I and 0 sets typically represent a storage element (or pseudo-
element). Note that for some operations the I or 0 set may be
empty (denoted by 0). For example, the MOP that sets/ resets the
interrupt enable has an empty I set. The T set represents the time
increments in which the E set is active. Time increments are

3-18

JRS
arbitrarily defined to be 1 nanosecond per increment. The T
set for a MOP thus represents the contiguous time intervals,
within the cycle, during which the (i). (4, and {0) resources
are active and unavailable for other MOP usage. For those
MOPs whose execution results in multi-cycle activation times
for various resources, a syntactical form is defined. Note that
for multi-cycle activated elements such as large data memories,
external floating point units, and the like, a pseudo-element is
defined which represents the functional interface to the element.

...This technique allows for the separation of the resource int an
activation time within the cycle (for the interface) as well as
an activation time for the actual resource. This capability will
allow for more efficient utilization of resources which have a
'look-ahead' capability, a pipelined mode of execution, etc.

The types of MOP usage rules (Dasgupta's 'organizing mechanisms')
required for instruction set interpretation are, at least, those to
do the following functions:

1. ALU
2. Shift
3. Movement
4. Address Formation
5. Control
6. Interface
7. Data

To derive the basic operations needed in the MOPs, the usage
rules are used in a procedure as follows. The IL2 instruction
set is compared with the capabilities of the microinstruction
format. The OP operations selected are only those that form the
union of the sets:

OP is an operation which exists in both the IL2 tuple

and the microinstruction format

and

OP is not an IL2 operation, but is a primitive operation
of the basic type needed to decompose an IL2 operation.

With the OP operation determined, the I set and 0 set resources
must be selected so that the execution of OP, (i, (0) is a primitive
operation of the machine. This means that (0) must be chosen

3 - 19

JRS
as the next immediat s tion ofP (i). The coupling of
information from the (I), O) sets of one MOP to another can be
accomplished by a movement primitive when necessary.

As an example, consider the TRW 2AU-80 (B side only) [Ref. 5%, 35].
If we select registers AM and BM as the storage element inputs
to tbe ALU, there are several choices for output storage elements.
RAM. BM, BL, AM, AL and ALUM are all possible storage
elements to receive the results of the operation. When we are
obligated to select the storage element which is the next immediate
destination, we select ALUM. The transier of ALUM contents to
other storage elements such as RAM, BM, or BL must be
accomplished by the movement primitive.

This definition of machine prim,.tive is necessary to achieve the
flexibility needed in the code generation and improvement step
of the compilation process.

The executionofamicroinstruction is controlled by the fixed timing
of a control store cycle. MOP timings are determined by the
multiple minor or polyphase timing periods within the control

store cycle. Examples of these minor cycles are time to load
registers, time to settled ALU output, time until the RAM address
registers are latched for a read or write operation or the time A!
to perform an ALU operation. This latter timing period could
involve multiple control store cycles (a multiply or divide
operation for example).

The timing determinations for the MOPs are logical minor cycles
and, thus, may include one or more physical minor cycles. This
is particularly true in asynchronous machines where detailed
t imings on primitive operations are indeterminate in marry
instances.

The choice of fields for assignment to the MOP is obtained directly
from the microinstruction description. For example, the 80 bits
of the AU Command microinstructio fo at in the TRW 2AU-80is divided into 31 fields. Each OP. it), •U~which performs an AU
operation uses several fields.

3 - 20

L !_r t .

JRS
The use of ,E) set here refers to the physical transformation
unit which is (o perform the OP, 0if)l(0 MOP along with the
link units needed to route information. The choice of this unit
is made based upon the above discussions of primitive operation
selection. However, this selection is made with a more global
view in mind because of the conflict resolution which must take
place between MOPs in accomplishing the execution of the entire
IL2 statement.

The procedure is to decompose the IL2 otatement into a sequence
or sequences of MOPs which collectively accomplish execution.
This sequence(s) is then assigned the transformation unit resources
of one or more microinstructions (typically, minimum sequences

of MOPs generate the least number of microinstructions.)

An example of each of the above seven types of MOPs is as
follows:

1. ALU MOP usage rules are the general rules for using the
ALU(s)o rather than its specific functions. Elements
involved are the ALU(s) and those storage elements (or
pseudo-elements) which are the immediate inputs and
outputs. An example of the expression of an ALU usage
rule is:

ADD, RI R2 . Carz) 1Ar).(3,Cry.(~ 3T15),

where Ri denotes a general purpose register described in
the Element Descript,.on and (F) is derived from the
Microinstruction Description.

A

2. SHIFT MOP rules define the use of the shifter(s), in terms
of the elements (or pseudo-elements) which are immediate
inputs and outputs. An example is:

SRL, (ALOUT LI) (hifter2). (R 3 LINK), (T). (F)

3 -2

JRS
3. MOVEMENT rules are the rules for moving data between

storage and/or transformation units. Almost any hardware
component can be involved in a move. Note that no non-
trival transforming operation is performed on the data.
An example is:

MOVE, (BUS). (PAT H5),, (R 3). (T)4(F)

4. ADDRESS FORMATION rules specify the possible methods
of forming the address of the next microinstruction to be
executed. These rules are perhaps the most difficult to
derive because of the wide diversity of addressing schemes
available in microarchitectures. An example of this type
of usage rule is:

JUMP, (CSAR. MI. CARRYSET) . (CSAP). (CSAR). (T) . (F)

where CSAR is the control store address register, MI is the
address data from the microinstruction, carryset is a test-
able condition for carry set, and CSAP is the control store
address processor.

5. CONTROL MOP rules are used to set/reset the discretes of
the micro engine. An example, for setting the interrupt
enable, is:

SETIE, 0. (INTERRUPT PROCESSOR). (LATCH3). (T). (F)

6. INTERFACE MOP rules provide the ability to interface with
data memories, floating point units, Input/output units, etc.
Typically the elements involved are control and data registers.
For purposes of this description procedure, the external unit
itself is treated as a 'black box'. An example of a data memory
operation is:

READ, (MAR). MEMI). (MDR). (T). (F)

3 - 22

JRS
7. DATA usage rules are the means of introducing absolute

numerical quantities for addressing purposes and for
literals. Elements involved are constant memories or
literal capability in the microinstruction itself. An
example of a fetch of a constant from the constant memory
is:

b ~~~LOADCON, (AR). (MEMI). (XBU}.()(F
where CAR is the constant memory address register.

The T set values in the above rules are derived from the combined
timings specified for the individual elements involved (from the
Element Descriptions); while the F set is the union of the fields
associated with each of those elements.

3 - 23

JR8
3. 1.5 Micro Engine Behavioral Rules

The micro engine behavioral rules specify the interactions among
the MOPs. The purpose in specifying the behavior is to permit the
detection of conflicts which would prevent MOPs from being
executed concurrently (i. e. , in the same microinstruction). These
rules consider the inherent timing, resource, control word bit, and

possible data dependency conflicts between pairs of MOPS.

To derive the benefits of horizontally microprogrammed processors,
it is desirable to execute as many primitive operations (MOPs) as
possible within the timing period of one control word cycle, To
accomplish this, the detailed knowledge of the timing and resource
utilization required by each MOP, as specified in the sections
above, is necessary. With this information in hand, a determination
of the parallelism of MOPs can be made.

Two MOPs are said to be parallel if the execution of the MOPs in
the same control word cycle produces the same result as would beI obtained by the execution of the MOPs in separate control word
cycles. The detection of parallelism is generally divided into
target microengine dependent rules and target microengine
independent rules.

The target microengine dependent rules of behavior are determined
by examination of the characteristics of the specific target micro-
engine. As an example, consider targets in which there are several
different microinstruction formats possible. Each format can
typically be executed in one control word cycle. Thus, MOPs
available with different formats can never be executed together
(i. e., they are never parallel). As another example, in the TRW
2AU-80 [Ref. 34, 35] the multiply operation uses the. BM and BL
registers as source storage elements for the operands. Thus, the
BM and BL registers cannot be loaded by another MOP until the
multiply operation has finished. In this case, any MOP containing
the BM or BL register in the I set or 0 set cannot be placed in
the same control word cycle(s) as the multiply operation.

The rules for dependent behavior are incorporated into the micro-
engine behavior rules in an 'ad hoc' manner. Their representation
will preferrably be in matrix form very similar to those used below
for the independent rules.

3 - 24

JRS
The target microengine independent rules of behavior are deter-
mined from the usage rule representation of the MOP. They include
data dependency determinations that affect parallelism as well as
the determination of conflicts among resources and timing. The
specific resource conflicts of interest are: 1) conflicts among
the storage elements of the I and 0 sets within a sequence of
MOPs, 2) conflicts in the use of control word bits and fields,
3) conflicts that arise from timing overlaps, and 4) conflicts due
to the use of E set units (transformation and path units). The
rules for independent behavior are discussed in what follows.

Let MOPi and MOPj be two MOPs from the usage definition section.
Then we have:

MOP 1 : OP1 Qi. E}j ~ (Ti). (F1)

Data interactions can be summarized by the following situations:

"• If MOPi precedes MOPj and o'n (0
(di) ()

"* If MOP1 precedes MOPj and Oi 00

"* If MOPi precedes MOPj and 0

If any of these situations occurs there is a data dependency between
MOP1 and MOPj and a change in their order of execution would most
likely produce a result different than execpted. One must also be
concerned with interactions which are more subtly encountered.
Suffice it to say that MOPi and MOPj may be separated by many
other MOPs, each of which may not directly violate the above
rules, but will none-the-less chain the data dependence of MOPi
and MOPj.

The data interactions amongst MOPs are used during the code
generation and improvement step of the compilation rrocess to
validate execution concurrency capability between pairs of MOPs.

3 - 25

JRS
Conceptually, for non-data dependent conflicts, the behavior
description consists of a square matrix, B, whose rows and columns
represent the MOPs defined in the usage section. The entry at the
position Bij is 1 if a conflict exists between MOPs I and J, and 0
if no conflict exists. This is logically equivalent to a list of pairs
of MOPs for which a conflict does exist with regard to elements,
fields, or timing. To derive the behavior matrix, the possible
causes of conflict must be investigated separately and then combined.

Let MOPI and MOPJ be defined as above. We-then define three

intermediate matrices, as follows:

1. The resource conflict matrix, lij, is defined as:

In0 010j Otherwise .

Thus, RMj = 1 imples that some conflict exists between the
set of input and output elements of the MOPs. 4

2. The field conflict matrix, F1 j, is defined as:

(ij if (F 1)ro(Fj) # 0
toJ otherwise

Thus Fij = 1 implies there is a conflict for control word bit
usage between the MOPe.

3. The timing conflict matrix, T i, is defined as:

if T1~C1T~ #0 and R.1a
'TI. (o otherwise

Thus, if Tij a 1, some overlap exists in the timing of the
MOPs. However, this must be -further refined. It is clear
there is a conflict only when the same resource(s) is involved.

Hence, one must now examine the Rij matrix.

3 - 26

S " " • "- ... I , • . •••"•, .• ',

JRS
Given these three sets, we can then form the matrix, Bi,. for
non-data dependent conflicts according to the following riles:: f IF-: 1, then j- the a

• 0 If FLij - 0, and Tij a 0, then Bij -0

* If Fjj a 0, and Tij a 1. then B Rij

Thus. BLj matrix represents the interactions amongst MOPs due
to field, liming and/or resource contention. This matrix is used
during the code generation and improvement phase of the compi-
lation process to verify the ability to combine MOPs in forming
a microinstruction. L.. the ability of MOPs to be executed
concurrently.

3 47

F. ..•"• • .. '' • ••.,2 ,,_ ,, i ''•,,_._• .:a C [,i,.,l_..•. . ..• r••

JRS
3.2 INSTRUCTION SET INTERPRETATION

Using the procedures developed in Section 3. 1 above to collect
and describe the necessary target microengine information
(perhaps requiring several iterations through the procedures),
the next step in the process is to use this information to interpret
and decompose the more functionally complex IL2 statements.
Thus, t!e preceding sections have shown not only how the control
word and hardware components of a micro engine may be
described, but how valid MOPs may be formed and legally combined.
We can think of these sections an specifying the syntax, or the
form, of the machine. In order to create microprograms, we must
also know the semantics--the meaning--of the microoperations.
This will be used to effect the decomposition of IL2 statements.

The IL2 language is designed with the following goals in mind:

* To be machine independent
* To correspond as nearly as possible in a one-for-one

manner with MOPs generally available in typical
target microarchitectures, but without 'losing' any
information which may permit more efficient micro-
code generation

* To include those statements and capabilities necessary
for decomposing each IL1 statement as efficiently as
possible.

The format of the language is

Label, OP, 1, 0

where

Label is a statement label
OP is the operation code
I is the iource operand
O is the destination operand

The set of primitive IL2 statements, in this format, selected are
those which are necessary and sufficient for efficient decomposition
and execution of ILl statements.

3 - 28

JRS
Even though the IL2 statements specify very basic operations
in a generalized form, it still may be necessary to expand their
operation into a series of MOPs on the specific target micro-
architecture. Moreover, the statements are not yet bound to any
actual physical elements on the target microengine. This ex-
pansion, resource allocation, and binding proces is what occurs
in the IS1, code Improvement and code generation phases of the
process. In particular, ISI focuses on the techniques and pro-
cedures used to implement those ,L2 statements which expand into
one or more sequences of MOPs. Resource allocation and binding
considerations significantly add to the complexity of IS.

The interpretation of IL2 statements can be accomplished in two
ways. The first, referred to as static interpretation, is achieved
by selecting, in a static manner, a sequence of MOPs which will
accomplish the actions embodied in the IL2 statement specification.
The second, refcrred to as dynamic interpretation, is achieved by
selecting a sequence of MOPs in light of currently available machine
resources. The impact on the resulting code generated, using only
static interpretation, is usually adversely significant. Thus,

interpretation is most often accomplished by a combination of these
techniques.

The decomposition sequence is termed a template, and becomes,
for microcode generation, similar to a macro expansion for IL2
opcodes into a sequence of MOPs. At least one template must be
provided for each IL2 instruction. It is not altogether clear how
to permit the templates to reflect the dynamic state of the micro-
engine. It may be sufficient, however, to specify a number of
static templates to permit the code generator to select the one which
best matches the current state of the microengine resources. The
issue is closely bound to the general resource allocation scheme
used by the code generator.

Thus, an overview of the ISI procedure might be the following:

1. Define a macro form expansion for each IL2 statement;
call this the standard template.

2. Determine methods and techniques for assessing the
resource requirements and timing information of
interest for these standard templates.

3 - 29

S. :.. • a•.- ., - -, • ,.. _-_• _. • . ' ,,*,' • _ T.. , ,-. - - " " %• •

JRS
3. Using the standard template, devise a means of

indicating alternate, but equivalent, ways to accomplish
the function/operation (equivalent both in terms of
resulting action and in-terms of resource capability).

4. Devise a means to modify the standard template, at
time of use, to accommodate currently available
microengine resources.

5. Determine a means of assessing penalties associated A
with these modifications so that a 'best fit' can be
chosen.

The above procedure would be significantly simplified, from a
practical viewpoint, if the usage rules (IL3 statements) given earlier
could be used to derive a means of assessing the equivalency of
MOPs or MOP sequences in terms of function (operation), resource
requirements and utilization, and timing information. (Although
only start-to-stop timing for the MOP sequence is directly of interest,
the timing associated with indirectly affected elements is of major

concern). It is apparent from efforts to date that the MDM can be
used to validate MOPs formation and thus, to form valid sequences
to be used to establish a standard template. However, resource
equivalency and interchangeability, as well as standard template
selection and formation, are processes which require judgment
and thus a high level of artifical ikielligence.

Another scheme which appears to have promise is the following.
To start with, instead of building a template for each IL2 statement
type, a MOP tree is built with branches denoting different,, but
appropriate, choices for the selection of each MOP in the execution
sequence, and an associated MOP busy or free resource utilization
table is built. Thus, as each IL2 statement is interpreted , a MOP

tree is traversed generating a MOP execution sequence using only
available (free) MOPs.

This means of interpretation has significant advantages in terms of
efficiency of code generated; however, depending on the complexity
of the IL2 statements, MOP trees may be difficult to define.
Additionally, compilation times are longer and, for very 'branchy'
trees, may be prohibitive. Suffice it to say that MOP trees must
be judiciously chosen and limited in extent.

3 - 30

JRS
3.3 PRELIMINARY EXPERIMENTATION

To aid In the derivation and development of the techniques and
concepts under study, test microarchitectures were constructed,
and drawn upon from industry, to highlight the specific areas of
interest. Additionally, to reduce the complexity of analyzing the
architectures, simplifying initial conditions, assumptions, and
constraints were established to provide a test bed. Since the
study schedule did not allow for any extensive experimentation,
the test architectures were used to concentrate efforts on the
more critical steps in the Microarchitecture Description Methodology.

A rather general purpose bus oriented microarchitecture was
developed and refined for use in testing description concepts and
techniques. The model has a register oriented ALU, but incor-
porates a capability for several levels of memory (scratch pad, fast
RAM, slower main memory, etc). The model also allows for external
(speciai) device interfacing through the bus structure. The micro-
engine itself has a shift capability, significant discrete control
flexibility, and significant test condition and microaddressing
capability. This model serves as the 'strawman' architecture for
description techniques and methodologies. A simplied t '.ock diagram
of this microarchitecture is given below in Figure 3-6. This
architecture is typified by the microengines of references [23],
[14]. [1, 25], [36, 37], [29], and [21, 22].

An example of a typical simplified microinstruction for the 'strawman'
class of microarchitectures is given in Figure 3-7. Other examples
can be found in [25], [36, 37], and [14]. In particular, [14] presents
the microinstruction layout for a stack oriented architecture.

A second type of microarchitecture was also used in testing the
MDM concepts developed. This is an asynchronous architecture
typified by the microengi ne of reference [35]. These architectures
are also called DATA FLOW archbtectures because they are data or
event driven and are of particular interest in signal processing
applications. A simplified block diagram of this type of micro-

architecture Is presented in Figure 3-7. An example of the micro-
instruction layout and contents for this type of microengine can be
found in reference [35].

3 - 31

0

a) .E-4a 0

nto

bQQ

coo00
E-4

3 32

10 0

0

0 ,-

E4:

= ioU

rA E

U0

ca

co

W ~ rX

COD

3 - 33

A4 0

C.E-4

C,

UE

K C1244

cccv

3 34

JRS
3.3. 1 Specific Target Microarchitecture Assessments

Several specific target microarchitectures were chosen to be used
: ~to ascertain the 'fit' of the MDM. The architectures chosen repre-

sent a wide diversity of commercially developed processors. Also
included are processors based on popular bit-slice microprocessors.
The MDM evaluation and assessment of the latter is very difficult
because of dependenQies on implementation preferences and
philosophies not available to the author at this writing. The targets
chosen are the following:

e AMD 2901 Series
a DEC VAX 11/780 Processor
. TRW 2AU-80 Processor

3.3. 1. 1 AM2901 Based Processors

The processor of reference [25] is one of several using the
AM2901 series devices. (Similarly, there are processors based
on the MC68000 and the MC10800 series devices. The AM2901
series was chosen because of the authorh familiarity with this
series). The AM2901 series devices are four-bit microprocessor
slices consisting of a 16-word by 4-bit two-port RAM, a high-
speed ALU, and the associated shifting, decoding and multiplexing
circuitry. The 9-bit microinstruction word is organized into
three groups of 3-bits each and selects the ALU source operands,
the ALU function, and the ALU destination register. The micro-
processor is cascadable with full look-ahead or ripple carry, has
3-state outputs, and provides various status flag outputs from the
ALU. For more details, the reader is referred to reference (25].

The MDM description of processors that are AM2901 based pose no
severe problems, in general. There are some trouble spots,
however. In particular, those implementations that use a multiply/
divide step approach to multi-precision arithmetic tend to be difficult
to describe in terms of timing because of the complex inter-relationships
amongst participating elements. Notable among these elements are the
double shift elements, i. e., the shift extension register, and the
shift control multiplexors. H

3 35

t

JRS
3.3. 1. 2 DEC VAX 11/780 Processor

The VAX 11/780 is a multiprogramming computer system. The
system uses a 32-bit architecture, memory management and a
virtual nmemory operating system to provide essentially unlimited
program address space. The processor has a variable length
instruction set and a variety of data types including decimal and
character string types. The central processing unit of the VAX
11/780 includes:

* 8 byte prefetch instruction buffer
* T ime of year clock.
e Programmable real time clock
e Floating point accelerator
* Writable Control Store (12k bytes)
e Writable Diagnostic Control Store (12kbytes)
e 128 entry address translation buffer
e 8k byte cache memory (two-way associative)
* Integral memory management
* Sixteen 32-bit general registers
* 32 interrupt priority levels
* Intelligent console interface

The micro-engine is composed of 8 separate asynchronous sections:

* Arithmetic
* Exponent
* Address
e Data
* ID Bus
* General control 1
* Micro-sequencer
* Interrupt

The VAX 11/780 Writable Control Store Option consists of 1024
96-bit words occupying addresses 1400 through 17FF. Each word
also contains 3 parity bits. The control store word is separated
into 3 banks for loading and executing purposes:

Bank 0: bits 0-31 (numbering right to left)
Bank 1: bits 32-63 (numbering right to left)
Bank 2: bits 64-95 (numbering right to left)

3- 36

JRS

Many of the micro-fields are multipurpose so that the control word
has numerous formats. The basic microcycle is 320ns; however,
certain activities can cause a microinstruction to exceed this.

The documentation available, covering the microengine architecture
and microprogramming of this processor, is given in references
[36, 37]. Although this documentation is well written and somewhat

detailed it is less than ad,.quate to allow one to use and evaluate this
processor for microprogramming purposes. In particular, little
information is given about microoperation relationships and no
explicit information is given about intra-cycle timing and timing
relationships in general.

This microengine is relatively easy to accommodate with the MDM
in terms of the microinstruction description and the element
description. However, due to the very close inter-relationships
with the resident standard microinstruction decoding microcode, the
usage rules (IL3 statements) are somewhat difficult to derive and
the behavioral rules are many and complex. The behavioral rules
tend to degrade into 'ad hoc' and exception rules because of the
design orientation toward hardware which executes a macroinstruction
set most efficiently. Of particular difficulty are the usage and
behavior-". rules associated with hardware-assisted features used*
for er t .tion of the macro-instruction set. Four additional areas
of difficulty are:

1. The cumbersome and complex main memory interface (the
cache in particular);

2. The use of a constant memory which involves a multi-
cyc le operation;

3. The restrictions on general purpose register usage (due
to their dp,4 -ation to macro-instruction functions); and

4. ti o'ni .. me and complex interface among asynchronous
sections kfor example, the Exponent Section).

3.3. 1.3 TRW 2AU-80 Pr:' .efsor

The TRW 2AU-Zo processor is described in detail in reference
[35]. As mentioned earlier, this processor represents an asyn-
chronous architecture, designed primarily for signal processing
applications. In an asynchronous architecture, operations are

3

t ~3-37

JRS
caused by events as opposed to clock timings. In many instances,
operations are triggered by any one of a combination of inputs
being changed. Thus, if one were to determine the conditions for
use of a specific elerent at a specific point in time in the micro-
code, one could require significant 'aprioril knowledge of the
previous usage of related elements; not only from the earlier
stages of the current microcycle, but perhaps from actions specified
in several previous microcycles. This "nability to exactly specify
primitive operation timings makes a general machine description
very difficult. A synchronous machine on the other hand has a very
well-defined timing relationship amongst its primitive operations.
One has only to be concerned with the actions taken at the point in
time of interest.

Since the TRW 2AU-80 is an asynchronous architecture, initial
attempts at microarchitecture description technique s took the form
of a resource and timing model specification (See reference[12]).
The reason for this is as follows. In order to improve microcode
efficiency by local compaction, one must be able to determine the
state of the targets' resources at various decision points. (It is
also clear that any global optimization algorithm relies heavily on
this determination as well.)

Thus, in applying this to the TRW 2AU-80, the non-deterministic
nature of the processor leads to an inability to exactly specify
primitive microoperation timings. Thus, for example, instead of
doing a register load operation by building a route, using primitives
like multiplexors and path designators, in a one-after-the-other
sequence based on knowing specific timing relationships, a complete
route for the desired register load would have to be denoted along
with its complete and exact timing. Even through the use of this
broader definition, the 'cost' in time of using a specific route, at
a specific point in the microcode, can not always be calculated
with sufficient accuracy to assure reliable code. Moreover, the
impact on the efficiency of the code generated and on the compilation
time required due to the above definition is difficult to assess.

Particularly troublesome areas for the MDM are the following:

$ Path/Function element descriptions
• Ascertaining the time associated with the use of

only the path/function element

A
3 - 38.!

JRS
e Ascertaining the time associated with the use

of the path/function element and the relationship
with 'a priori' conditions

* Decerming the conflicts in other resources
associated with the use of a particular path/function

Another architectural feature of the target processor which impacts
the description process is its ability to parallel process, Although
the TRW 2AU-80 has two arithmetic units, they are both serviced
by a single control store and control store sequencer and thus, are
operationally very dependent. Moreover, the two arithmetic units,
without an interrupt or communication/control link, pose significant
difficulties for 'true' parallel processing because there is no
describable control mechanism to allow for synchronizing the
processing. With the arithmetic units sharing soma working
registers in performing certain arithmetic operations, a 'time-out'
situation is the only means of precluding conflicts between the units.
This lack of describable control minimizes the parallelism :-f a
horizontal processor In an automatic microcode generation system.

3 -39V

JRS
4.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations which follow are an attempt
to address the more substantial issues and concepts which play a
dominant role in the microarchitecture description methodology
process. Because of the wide variation of some of the more signi-
ficant paramneters involved in microarchitecture description and
the limited amount of study time, feasibility was approached with
'soft' criteria as opposed to the more formal 'pass-fail' criteria
for evaluating the techniques and concepts developed.

4.1 Microarchitecture Description Conclusions

Based on limited experimentation and application, the microarchitecture
description methodology described earlier in this document appears
to be both feasible and practical for use in the HLL-to-microcode
compilation process to describe and interject the target processor
characteristics. The parameters derived and developed in estab-
Using the methodology are an attempt at developing an invariant
microengine description procedure. These parameters are very
idealistic, in that they represent the parameters (and their form
and information content) in the way that is most desired. However,
this approach lends itself to quantification most easily and allows
for establishing the basic 'ground' rules for description purposes.
Using these rules, ad hoc interpretations can be made.

The microinstruction description of the microengine gives an
indication of the kinds of control available as well as the flexibility
available in exercising this control. Tte description attempts to
provide syntatical and semantical capability to allow the latter
'usage rule' section to use these efficiently. Similarly, this
descriptive capability is applied to the data manipulation and
computational functions available in transformation units, the
resource characteristics and allocation/deallocation complexity
of storage elements and the flexible in data flow control available
in the path or link units in the element description section.

Although the syntax and semantics for the microengine timings of
interest have been provided for, it is felt that much more detailed
experimentation is necessary to 'flesh-out' this area of the MDM.
The timing parameterization of the microengine has the most

4-1

... V

JRS
dramatic impact on microcode density and thus, on microcode
efficiency. The importance of the ability to determine timing In
sufficient detail cannot be overstressed when microcode efficiency
is of concern. Of particular interest is the capability for more
detailed description of multi-cycle MOPs. These MOPs tend to be
highly inter-related with the other elements and so tend to cause
usage constraints and highly complex usage rules. Similarly,
more practical experimentation with the behavioral features of
microarchitectures is needed to capitalize on the concurrency
available in MOP formation. This again has a very significant
effect on the generated microcode efficiency.

Finally, the control store next address formation issue is of
concern. Although provisions in the MDM allow for the description
and usage of an 'organizing mechanism' labeled the Control Store
Address Processor, the wide variation amt gst microengine imple-
mentations of this capability precludes relatLvely easy and simple
description. Moreover, this mechanism is highly inter-related
with the microinstruction description and the action and timing of 4
the remaining microengine elements. Since this also affects
microcode efficiency, the MDM must be extended, through experi-
mentation, to allow for very detailed syntticasl and Lemantical
descriptions of this area of the microarchitecture.

4.2 Instruction Set Interpretation Conclusions

As was mentioned in Section 3. 2, the ISI issue is closely bound to
the general resource allocation scheme used by the code generator.
There is virtually no limit to the kinds of resource allocation/
deallocation schemes which may be employed in
Instruction Set Interpretation. The crucial question is: In terms
of code generation overhead costs, at what point does the worth
of the schemes lead to little or no value in terms of exp,:ution
efficiency? !

It is clear from previous work that, particularly for microengines
with parallel processing capability, a significant improvement in
execution efficiency can be obtained by the use of appropriate
allocation/deallocation schemes. The value of a particular scheme
is directly related to target machine microarchitectural considerations.
This is especially the case with storage element allocation/deallocation
schemes in machines with several hierarchical levels of memory.

4-2

JRS

The most important elements to be allocated are the microengine
transformation unit (or units) and its storage elements (especially
registers). Transformation units may be allocated by maintaining
a utilization table with 'free/busy' status and timing information.
Storage units may be allocated in many ways, such as FIFO,
frequency-of-use, etc. The approach favored is to compute a
'penalty' associated with deallocation of each variable, based on
usage, variable size and type, and allocate new variables during
ISI, as required, to those resources for which the deallocation
penalty is smallest.

From a compilation process point of view, it appears that the most
severe disadvantage and/or limitation of resource allocation/
deallocation schemes is due to the generation and computations
inderent in using tree structures and tree structure decision
making during the ISI phase. 4
Besides the general resource allocation/deallocation schemes used,
the ability to use the usage rules derived in the MDM to dynamically
form MOP templates for IL2 decomposition is of significant value
in the ISI process. The ability to form equivalent MOP templates
based on currently available resource situations would allow for
highly dense and efficient microcode. If this process can be auto-
mated to dynamically interact in the microcode generation process,
the practicality of the MDM will be significantly enhanced. Moreover,
the ease of and time for retargeting the HLL-to-microcode compi- 7
lation process will be greatly simplified and shortened.

4.3 Recommendations

The MDM concepts presented earlier in this document form the
basis for a procedure which will simplify and speed-up the re-
targeting of the HLL-to-microcode compilation process discussed
in Section 2. 0. However, continued research and experimentation
is needed which is directed towards establishing the practicality
and efficacy of the MDM in the compilation process (see Appendix B).

4-3

JRS
I

The need is for more indepth and thorough experimentation and
evaluation across a wide spectrum of microarchitectures. In
particular, parallel and pipelined archiectures should be investi-
gated and experimented with as well as conventional architectures
and the more contemporary data flow architectures. The continued
research and experimentation in diverse microarchitectures
should focus on 'fleshing-out' the MDM in microengine detail
description and in providing a more general and complete syntatical
and semantical basis for ISI. Additional areas requiring further
efforts are:

* the development and use of dynamic ISI techniques
* the development and use of resource allocation/

deallocation techniques to aid in dynamic ISI
* the development and use of a more generalized micro-

code generator to aid in experimentation in the above
areas

An additional objective of continued research and experimentation is
an assessment of the feasibility of using the MDM to produce
verification and validation tools to be applied to the microcode

generated by the compilation process, as enhanced by the above.
Given a description of a target processor, using the MDM discussed
above, and given a means for assimilating this description to do
the ISI step with appropriate resource allocation schemes and
capabilities, the next significant problem one encounters is a
means for verifying and/or validating the microcode generated by
the compilation process. Work done to date strongly recommends
the use of the MDM to provide some solution to this problem.

It appears likely that the MDM can be enhanced to provide for the
automatic generation of a Simulator for the described target machine.
This would allow for the symbolic execution of the generated micro-
code to verify correct microinstruction formation as well as
establishing the validity of the resulting microprogram.

This capability would be of significant benefit to the compilation
process and to further research and experimentation in the pieces
of the process. Of particular significance is the capability to
perform very detailed evaluations of microarchiectures, in rela-
tionship to specific processing algorithms, in a quick, direct, and
measurable way. 4

4-4

JRS
With4 the development of tools and techniques in the above men-
tioned areas and continued study and experimentation of the entire
process, strong preliminary indications are that the benefits of
an easily retargeted automatic microcode generation system will
be realized.

!iA

4-5

Sa -

JRS
5.0 BIBLIOGRAPHY

[1] Advanced Micro Devices Data Book (AMD2900 data),
Advanced Micro Devices Corporation, Sunnyvale, Ca.,
1976.

[2] Advanced SMITE Technical Report (Interim): Performance
Measurement.Extensibility, and Concurrency Study, TRW
Corporation, Defense and Space Systems Group, March 1978.

[3] Agrawala, A. K. and Rauscher, T. G., Foundation of
Microprogramming Architecture, Software, and Application,
Academic Press, Inc., 1976.

[4] Baba, T. and Hagiwara, H., "The MPG System: A Machine-
Independent Efficient Microprogram Generator", IEEE
Transaction on Computers, Vol. C-30, No. 6, June, 1981,
pp. 373-395.

[5] Barbacci, M. R., Barnes, G.E., Cottell, R. G., and

Siewiorek, D. P., The ISPS Computer Description Language,
Carnegie-Mellon University, Pittsburgh, Pa., March 1978.

[6] Blou, J.S., Holland, C.J. and Keating, D.L., "The
Micro-Architecture of the Eclipse MV/8000-Conceptions
and Implementation," Proceedings of the 13th Annual
Workshop on Microprogramming, November 1980.

[7] Bondi, J. 0. and Stigall, P.D., "HMO, A Hardware Micro-
code Optimizer, " Proceedings of the Second Annual
Symposium on Computer Architecture" January 1975.

[8] Chu, Y., "Introducing CDL," Computer, Vol. 7, No. 12,
December 1972, pp. 31-33.

[9] Dasgupta, S., "Some Aspects of High-Level Microprogramming",
ACM Computing Surveys, Vol. 12, No. 3, September 1980,
pp. 295-323.

(10] DeWitt, D., "A Control Word Model for Detecting Conflicts
Between Micro-Operations, " Proceedings of the Eighth
Annual Workshop on Microprogramming, October 1975.

5-1

I

JRS
[11] Drongowski, P. J. and Rose, C.W., "Application of

Hardware Description Languages to Microprogramming:
Method, Practice, and Limitations," Proceedings of
the 12th Annual Workshop on Microprogramming,
November 1979.

[12] Final Report for the Study of Compilers for High Throughput
Horizontal Microprocessors, JRS Industries, Inc., San
Diego, Ca., November 1979.

[13] Final Technical Report for Nigher Order Language for
High Throughput Horizontal Microprocessors, JRS Industries,
Inc., San Diego, Ca., October 1980.

[14] GPH Processor lReference Manual - Preliminary (Proprietary),
Delphi Communications Corporation, El Segundo, Ca.,
April 1981.

[15] Hill, F. J., tIntroducting AHPL," Computer, Vol. 7,
No. 12)December 1972, pp. 28-30.

[16] Knudsen, M. H., "PMSL, An Interactive Language for
System-Level Description and Analysis of Computer
Structures", Carnegie-Mellon University, Pittsburgh, Pa.,
(NTIS AD 762 513), 1973.

[17] Lankskov, D. , Davidson, S., Shriver, B., and Mallet, P. W.,
"Local Microcode Compaction Techniques, " ACM Computing
Surveys, Vol, 12, No. 3, September 1980, pp. 261-294.

[13] Ma, P. and Lewis, T., "On the Design of Microcode Compiler
for a Machine-Independent High-Level Language, IEEE
Transactions on Software Engineering, Vol SE-7, No. 3,
May 1981, pp. 261-274.

[19] Marczynski,. R. W. and Bakowski, P., "What Do the Computer
Hardware Description Languages Describe?", Proceedings of
the 4th International Symposium on Computer Hardware
Description Languages, October 1979.

[20] Maxey, G. F., and Organick, E. I., " CASL - A Language
for Automating the Implementation of Computer Architectures,"
Proceedings of the 4th International Symposium on Computer
Hardware Description Languages, October 1979.

5-2

JRS
(21] MC10800 Application Notes (AN-776 and AN-792), Motorola

Semiconductor Products, Inc., Phoenix, Az.. August 1977
and May 1979.

2[2] MC68000 Design Module User's Guide (MEX68KI)M-02),
Motorola Semiconductor Products, Inc., Phoenix, Az.,
August 1979.

[23] MDAC Model 673 Processor Reference Manual (Proprietary),
McDonnell Douglas Astronautics Company, Huntington Beach,
Ca.

[24] Meinen. P., "Formal Semantic Description of Register
Transfer Language Elements and Mechanized Simulator
Construction," Proceedings of the 4th International Symposium
on Computer Hardware Description Languages, October 1979.

[25] Microprogramming Handbook (AMD 2900). Advanced Micro
Devices Corporation, Sunnyvale, Ca.. 1976.

[26] MULTI Micromachine Description, Nanodata CorporatLon,
Williams ville, N. Y.

[27] Nagle, A. W., "Automatic Synthesis of Microcontrollers,"
Proceedings of the 11th Annual Workshop on Microprogramming,
November 1978.

[28] Nash, J. and Spak, M., "Hardware and Software Tools for
the Development of a Micro-Programmed Microprocessor,
Proceedings of the 12th Annual Workshop on Microprogramming,
November 1979.

[29) Programmers Reference Manuals for the AP-120B - Part
One and Part Two, Floating Point Systems, Inc., Beaverton,

Oregon, January 1978.

[30] Schuler, D. M. , "A Lauguage for Modeling the Functional
and Timing Characteristics of Complex Digital Components
for Logic Simulation, " Proceedings of the 4th International
Symposium on Computer Hardware Description Languages,
October 1979.

[31] Siewiorek, D. P., "Introducing ISP," Computer, Vol. 7, No. 12,
December 1972, pp. 39-41..

5 ,

5-3

JRS I

[32] SuS., "Hardware Description Language Description: An
Introduction and Prognosis, " IEEE Computer, June 1977.

[33] Technical Report: Target Machine Description Methodology
for HOL-to -Microcode Compilation - Preliminary Specification,
JRS Industries, Inc., San Diego, Ca., March 1980.

[34] TRW 2-AU-80 Processor Operating Manual (TRW IOC
7334.4-187), TRW, Inc., Redondo Beach, Ca., February 1978.

[35] TRW 2-AU-80 Processor Specification (TRW IOC 7334.4-188),
TRW, Inc., Redondo Beach, Ca., August 1978.

[36] VAX 11/780 Data Path Description Manual, Digital Equipment
Corporation, Maynard, Mass., February, 1979.

[37] VAX 11/780 Microprogramming Tools, Digital Equipment
Corporation, Maynard, Mass., July 1980.

4 1..

5-4

JRS

APPENDICES

74

JRS

APPENDIX A Published Paper:

Automatic Microcode Generation for
Horizontally Microprogrammed Processors

I

.I

S... .•...... --• •_ .• . ..• • _ : • .. -'.: ',•" •: .. •,, .-• .=- ., -•... • .. .-: •I• __ ::.•= :.•..• • •r .. ., ,. , ,..._• I

JRS

APPENDIX B:

CONTINUING STUDY AND EXPERIMENTATION PLANS

1. 0 INTRODUCTION

2.0 STUDY AND EXPERIMENTATION TOPICS

3.0 STUDY AND EXPERIMENTATION PLANS

JRS
.I

1.0 INTRODUCTION

To meet the needs discussed in Section 4. 3 of this report, con-
tinued research and experimentation is required. That is, using
the data and results generated and documented in this report as
a baseline and utilizing an existing Automatic Microcode Generation
System as an experimental 'testbed', continued research and
experimentation is needed which is directed towards establishing
the practicality and efficacy of the Microarchitecture Description
Methodology (MDM) designed for use in the compilation process.

The effort would have as its primary objective the development
and demonstration of a practical, generalized, and portable pro-
cedure to be used to retarget the compilation process; particular
emphasis should be placed on the ease of use of the procedure
and on the efficiency of the resulting microcode. The demonstration
should also include 1) the use of the Dynamic Instruction Set
Interpretation Techniques, 2) the use of Resource Allocation/
Deallocation Techniques to aid in dynamic instruction set inter-
pretation, and 3) the use of a generalized microcode generator
in the compilation process.

A secondary objective of the effort would be an assessment of the
feasibility of using the MDM to produce verification and validation
tools to be applied to the microcode generated by the compilation
process, as modified by the primary objective.

In summary, then, continued work is needed to develop the tools
necessary to perform experimentation in the Microarchitecture
Description Methodology area, to conduct experimentation aimed
at testing the approaches taken,at generalizing to diverse micro-

architectures and at uncovering and exploring technical issues of
significance.

B
Li

B-1

- .,.

JRS
2.0 STUDY AND EXPERIMENTATION TOPICS

Using data and results generated under Contract DAAG29-81-C-0018
as a point of departure, continuing studies and experimentation
should be directed toward the demonstration of the efficacy of a
microarchitecture description methodology (MDM) designed for
use in the automatic generation of microcode, from a HLL, for
horizontally'microprogrammed processors. In determining the
efficacy of the MDM, the primary measure should be the efficiency
of the microcode produced. Cost and ease of creating the MDM
with sufficient descriptive capability should also be considered.

Efforts are also needed to study and evaluate resource allocation/
deallocation techniques to aid in the use of the MDM to generate
efficient microcode, the use of a more generalized microcode
generator, and the use of the MDM to produce verification and
validation tools for the generated microcode.

In the conduct of the continuing study and experimental effort, the
following topics and tasks should be addressed:

* Continue to review and evaluate the microarchitectures
of the horizontally microprogrammed processors avail-
able and select functionally diverse architectures to be
utilized as the basis of the study and experimental effort.

* Continue to review the MDM previously developed and
apply it to the microarchitectures selected above,
taking into account the characteristics of the automatic
microcode generation system and the special features
and facilities of the selected microarchitectures.

"* Enhance and make extensions to the MDM to accomplish
instruction set interpretation in an efficient manner.
This should focus on dynamic interpretation and should
use the resource allocation/deallocation schemes and
techniques developed below.

" Study,evaluate, and develop resource allocation/
deallocation techniques, which take into account the
detailed functions and facilities of the selected archi-
tectures and which make use of the information con-
tained in the MDM, to aid in the generation of more efficient
microcode.

B-2

JRS
• Further enhance and make extensions to the code

generation portion of the HLL-to-microcode compi-
lation system to allow for the use of the more
generalized techniques developed above.

* Prepare and select appropriate applications as test
cases.

e Prepare in HLL format and run test cases, of portions
of the applications code selected above, through the
compilation system, examine the results, and determine
the effectiveness of the process.

e Attempt to optimize and improve the microcode generated
through the use of the above mechanism by making modi-
fications as required.

9 Compare the microcode resulting from the 'new' compi-
lation process to that manually generated to obtain a
measure of efficiency of the compilation process and to
acquire insights as to how to improve the process.

e Attempt to L'nprove the efficiency of executing the entire
compilation system, particularly in the MDM and code
generation areas, by reviewing and analyzing the algorithms.
techniques, and methodologies implemented looking for
tradeoffs to reduce overall time, complexity and compi-
lation costs.

* Further enchance and make extensions to the MDM to pro-
vide for the development of verification and validation tools.
In particular, focus on the use of the MDTM to provide a
target microarchitecture simulator with which to verify
and validate the generated microcode.

B 3. .

JRS
3.0 STUDY AND EXPERIMENTATION PLANS

The topics and tasks listed in the previous section represent a
minimal continuing study and experimentation effort. The efforti
should be structured with enough flexibility to allow for the investi-
gation and inclusion of additional topics which amy result from theI pursuit of an indepth and thorough consideration of these topics.
Moreover. the efforts specified in the list require an iterative
approach; that is, continuous 'feed back' of the kniowledge derived
at each step is used to refine and enhance the techniques of the
previous steps.

researchers in this field. In particular. technical treatise on the

oInstruction-set interpretation techniques,

e eouc allocation/ deallocat ion techniques for4
microcode improvement and generation. and

* Microcode verification and validation techniques
and methodologies

would be welcomed. Thus, as part of the continuing study and
experimentation, the preparation, submittal, and presentation
of papers to technical journals, publication, seminars, and con-
ferences, as appropriate, to insure the widest possible dissemination
of the findings of efforts in these and other allied areas should be
planned.

For planning purposes, the topics of the previous section have been
scheduled and are presented in that form below. This schedule is

meant to be used only as a planning guide. The schedule implies
a study and experimentation project approximately 15 calendar
months in duration if the topics discussed In the previous section
are used as a statement of the efforts to be performed.

It is anticipated that several topics, in particular microcode yerl-
fication and validation considerations, will require more effort to
define and finalize. However, investigations performed in this
incremental manner will allow for the evaluation of progress and

B- 4

JRS
the determination of the technical merit of the topic being
developed, the analysis being performed or the study being conducted,
and will allow for the dissemination and/or incorporation of current
scientific and/or technical information. It also allows for an
interim summary and status of all work, done in all topics considered,
including that yieding negative results or positive results not used
as well as interim conclusions and recommendations for still further
evaluation and/or redirection.

B-5

!P W W - _

Go- --- - -m- -

-kc -1 -1 1-- - -

-0 -) - - - - - - -

N - A - - - - - - - -

- - -- - - - - a - - -

4-b- - - - - - - - - - -

102 0
W OW

0) 0)

0. >

